
Similarity and topologies generated by
iterations of functions

Ma lgorzata Filipczak and Ma lgorzata Terepeta

Abstract.We examine families of sets with nonempty interiors with respect to topolo-
gies generated by functions. We also study properties of topologies generated by iter-
ations of the functions and consider the similarity of such topologies.

Keywords: density topology, f -density topology, iteration, interior, similar topolo-
gies.

2010 Mathematics Subject Classification: 54A05, 54A10, 54C30, 26A18.

1. Introduction

On the same nonempty set X we can define different topologies and compare them
by inclusion or take into considerations some other properties such that separating
or countability axioms, compactness, metrizability and so on. We often identify the
topological spaces when they are homeomorphic. It is known that topologies with
different separating axioms can determine the same family of sets with nonempty
interior. In this paper, after [2], we will say that two topologies T1 and T2 defined on
the same set are similar if the families of sets with nonempty interior with respect
to T1 and T2 are equal. Then we will write T1 ∼ T2. The example of similar topolo-
gies with quite different properties are the natural topology on reals Tnat and the
Sorgenfrey topology generated by the base consisting of intervals of the form [a, b).
Another example of nonhomeomorphic similar topologies are topologies generated by
lower density operators with respect to σ-algebra L of Lebesgue measurable sets and
σ-ideal N of null sets.
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Recall that a lower density operator Φ : L → L satisfies conditions:

(1) Φ(∅) = ∅, Φ(R) = R;
(2) Φ(A ∩B) = Φ(A) ∩ Φ(B) for all A,B ∈ L;
(3) if A△B ∈ N then Φ(A) = Φ(B);
(4) A△Φ(A) ∈ N for any A ∈ L

and the family TΦ = {E ∈ L : E ⊂ Φ (E)} is a topology called an abstract density
topology generated by Φ. The most known is the classical density topology Td generated
by the operator Φd defined as follows: for each E ∈ L

x ∈ Φd (E) ⇐⇒ lim
h→0+

λ (E ∩ [x− h, x+ h])

2h
= 1.

There are a lot of non-homeomorphic abstract density topologies (compare [1]), but
properties of such topologies are quite similar (see for example [13, Sections 6.B and
6.E]). In particular, for any abstract density topology TΦ and any A ⊂ R, its interior
is given by the formula intTΦ

(A) = A ∩ Φ (B), where B is a measurable kernel of A.
Hence any set of positive measure has nonempty interior in each topology generated
by a lower density operator.

In [13, Section 6.D] there is presented the superdensity topology Ts generated by
the operator defined for each E ∈ L in the following way

Φs (E) =

{

x ∈ R : lim
h→0+

λ ([x− h, x+ h] \ E)

h2
= 0

}

.

The operator Φs is not a lower density operator because there is a measurable set A
of positive measure such that Φs (A) = ∅ (compare [13, Example 6.27]). However,
the family Ts = {E ∈ L : E ⊂ Φs (E)} is a topology (coarser then the density topo-
logy Td).

Using the notion of similarity we can say that any topology generated by lower
density operator is similar to Td but Ts and Td are not similar.

In the next section we will define certain density-type topologies called f -density
topologies. The topologies Td and Ts are the examples of f -density topologies – the first
is generated by the function f (x) = x and the second by the function f (x) = x2. In
the paper we will consider topologies generated by functions and compare the families
of sets with nonempty interiors in such topologies. We will pay special attention to
the topologies generated by iterations of a fixed function.

2. Topologies generated by functions and similarity

Let A be the family of all nondecreasing functions f : (0,∞) → (0,∞) such that

lim
x→0+

f(x) = 0 and lim inf
x→0+

f(x)
x

< ∞. Fix a function f ∈ A. We say that x ∈ R

a right-hand f -density point of a measurable set E if

lim
h→0+

λ ((x, x+ h) \ E)

f (h)
= 0.
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Analogously we define a left-hand f -density point of E and say that x is a f -density
point of E if it is a left-hand and a right-hand f -density point of E. Denote by Φf (E)
the set of f -density points of a measurable set E. This notion is a generalization of
classical density ([14]), 〈s〉-density ([9, 6]) and ψ-density ([12]).

Note, that the condition lim inf
x→0+

f(x)
x

< ∞ is crucial. Indeed, if lim inf
x→0+

f(x)
x

= ∞
then, for any x ∈ R and any measurable set E

λ ((x, x+ h) \ E)

f (h)
6

h

f (h)
−→
h→0+

0.

For any f ∈ A the family Tf := {E ∈ L : E ⊂ Φf (E)} forms a topology (called
f -density topology or topology generated by a function f) which is finer than the
natural topology on R ([3]).

It is not difficult to check that, for any f ∈ A, the operator Φf satisfies conditions
(1)–(3) of a lower density operator. Fulfillment of the condition (4) depends on the

value of lim inf
x→0+

f(x)
x

. If this limit is positive then almost all points of a measurable

set are its f -density points ([6]). Consequently, the interior of a measurable set E is
equal to E ∩Φf (E) and any set A ⊂ R has nonempty Tf -interior if and only if A has
a positive inner measure. Moreover, (R, Tf ) is a completely regular Baire space (see
[6]). The classical density topology Td is a topology of this kind and any topology Tf
with lim inf

x→0+

f(x)
x

> 0 is similar to Td.
Suppose now that f ∈ A and lim inf

x→0+

f(x)
x

= 0. In [6] it is shown that there exist

a closed set F of positive measure which has no f -density points and a closed set F1

such that Φf (F1) = {0} (see also [8]). Therefore Φf is not a lower density operator
and is not idempotent. Moreover, in general, for each E ∈ L, E ∩ Φf (E) need not be
included in intTf

(E) (for example Φf (F1) = {0} and intTf
(F1) = ∅). The situation

changes when λ (Φf (E)△E) = 0. By condition (2) from the definition of lower density
operator we obtain Φf (E)∩E ⊂ Φf (E) = Φf (Φf (E) ∩ E) and Φf (E)∩E ∈ Tf . Hence
Remark 2.1. For each E ∈ L, if λ (Φf (E)△E) = 0, then intTf

(E) = Φf (E) ∩ E.

The superdensity topology Ts is a topology of this kind. Obviously, no f -density

topology Tf with lim inf
x→0+

f(x)
x

= 0 is similar to Td. There is a natural question whether

such topologies are similar to Ts. The answer is negative.

Proposition 2.2. For any function f ∈ A with lim inf
x→0+

f(x)
x

= 0 there is a function

f1 ∈ A satisfying lim
x→0+

f1(x)
x

= 0 such that the topologies Tf and Tf1 are not similar.

Proof. From Theorem 2 from [5] it follows that there exists a closed set F ⊂ [0, 1]
of positive measure such that no point of F is an f -density point of F . Clearly
intTf

(F ) = ∅. By Theorem 3 in [11] there exists a continuous nondecreasing function
ψ : (0,∞) → (0,∞) such that lim

h→0+
ψ (h) = 0 and

lim
h→0+

λ ((x, x+ h) \ F )
h · ψ (h)

= 0 and lim
h→0+

λ ((x− h, x) \ F )
h · ψ (h)

= 0
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for almost all x ∈ F . The function f1 (x) = x · ψ (x) belongs to A, lim
x→0+

f1(x)
x

=

0 and almost all points of F are f1-density points of F . Therefore Φf1 (F ) =
Φf1 (Φf1 (F ) ∩ F ) and intTf1

(F ) = Φf1(F ) ∩ F . Hence intTf1
(F ) 6= ∅. ⊓⊔

In [7] there is presented a convenient description of “position” of topologies gener-
ated by functions relative to the classical density topology Td.
Theorem 2.3 (Corollary 1, [7]). Let f ∈ A.

(a) Tf = Td ⇐⇒ 0 < lim inf
x→0+

f(x)
x

6 lim sup
x→0+

f(x)
x

<∞.

(b) Tf $ Td ⇐⇒ 0 = lim inf
x→0+

f(x)
x

6 lim sup
x→0+

f(x)
x

<∞.

(c) Td $ Tf ⇐⇒ 0 < lim inf
x→0+

f(x)
x

< lim sup
x→0+

f(x)
x

= ∞.

(d) Tf * Td and Td * Tf ⇐⇒ 0 = lim inf
x→0+

f(x)
x

< lim sup
x→0+

f(x)
x

= ∞.

We will describe in a similar manner similarity of topologies Tf and Td. Let us start
from a simple property of similar topologies.

Remark 2.4. If T1, T2 and T3 are topologies defined on the same set X, T1 ⊂ T2 ⊂ T3
and T1 is not similar to T2, then T1 is not similar to T3.
Theorem 2.5. Let f ∈ A.

(a) Td ⊂ Tf ⇔ Td ∼ Tf .
(b) If Tf $ Td then there is a sequence (fn)

∞

n=1 of functions from the family A such
that (Tfn)∞n=1 is an increasing sequence of topologies such that Tf $ Tfn $ Td for
any n ∈ N and Tfi is not similar to Tfj for any i 6= j.

Proof. If Td ⊂ Tf then lim inf
x→0+

f(x)
x

> 0 and Φf is a lower density operator. Conse-

quently, Td ∼ Tf . If Td is not included in Tf then f satisfies (b) or (d) from Theorem

2.3. In both cases lim inf
x→0+

f(x)
x

= 0. Therefore, by [6, Theorem 8] there exists a closed

set F of positive measure with empty Tf -interior. Hence Tf is not similar to Td.
Suppose now that Tf $ Td. Repeating considerations from the proof of Proposition

2.2 we can find a closed set F1 ⊂ [0, 1] of positive measure such that intTf
(F1) =

∅ and a function g ∈ A with lim
x→0+

g(x)
x

= 0 and such that intTg
(F1) 6= ∅. The

function f1(x) := max {f (x) , g (x)} belongs to A. It is evident that if x ∈ Φg(F1)
then x ∈ Φf1(F1). It follows that intTf1

(F1) 6= ∅, Tf ⊂ Tf1 and Tf is not similar to

Tf1 . Moreover, lim inf
x→0+

f1(x)
x

= 0 and lim sup
x→0+

f1(x)
x

<∞. Hence Tf $ Tf1 $ Td.
We now proceed by induction and find a sequence {fn}∞n=1 of functions from the

family A such that, for any n ∈ N , Tfn $ Tfn+1 $ Td and Tfn is not similar to Tfn+1 .
By Remark 2.4, the sequence (fn)

∞

n=1 satisfies all conditions formulated in (b). ⊓⊔

Corollary 2.6. There exists an increasing sequence (Tn)∞n=1 of topologies generated
by functions, such that Ts $ Tn $ Td for any n ∈ N and Ti is not similar to Tj for
any i 6= j.
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At the end of this section let us remind one more topology connected with σ-algebra
L and σ-ideal N - the Hashimoto topology

T ∗ := {G \ P : G ∈ Tnat, P ∈ N} .

Since T ∗ $ Tf for any f ∈ A and
⋂

f∈A
Tf = T ∗([3]), we can treat the Hashimoto

topology as a “lower bound” of all f -density topologies.
It is easy to see that T ∗ is not similar to Tnat (for example, the set of all ir-

rational numbers is open in T ∗ and has empty interior in Tnat). Cantor-like set of
positive measure is an example of a set with nonempty interior in Td (and all Tf
with lim inf

x→0+

f(x)
x

> 0) and empty interior in T ∗. It is much more difficult to check

similarity between Tf with lim inf
x→0+

f(x)
x

= 0 and T ∗. We will discuss this problem in

the last section.

3. Topologies generated by iteration of a function

We will consider iterations: f1 = f , fk = f
(

fk−1
)

for k ∈ N. It is evident that if
f ∈ A, then for any k ∈ N the function fk is nondecreasing and tending to zero when

x approaches zero. The property that the lower limit of the fraction fk(x)
x

is finite
may not be fulfilled. Our first problem is to examine when fk, k ∈ N, belongs to the
family A. Next we shall check if the properties of topologies generated by a function
and its iteration are the same. First notice that

Proposition 3.1. For each function f ∈ A, we have the following:

(a) If lim inf
x→0+

f(x)
x

< 1, then fk ∈ A for any k ∈ N.

(b) If lim sup
x→0+

f(x)
x

<∞, then fk ∈ A for any k ∈ N.

Proof. Assume that lim inf
x→0+

f(x)
x

< 1. Then there exists a decreasing sequence (xn)n∈N

tending to zero such that f(xn)
xn

< 1, for n ∈ N. From monotonicity of f we obtain

fk(xn) 6 . . . 6 f(xn) < xn, for n ∈ N, and

lim inf
x→0+

fk(x)

x
6 lim

n→∞

fk(xn)

xn
6 1.

To prove the condition (b), first we will show that if lim sup
x→0+

f(x)
x

< ∞ then

lim sup
x→0+

f2(x)
f(x) < ∞. From the assumption there exist numbers M > 0 and δ1 > 0

such that f(x)
x

< M for any x ∈ (0, δ1). As lim
x→0+

f(x) = 0, so there is δ2 > 0 such

that f(x) < δ1 for any x ∈ (0, δ2). Let δ = min{δ1, δ2}. Then for x ∈ (0, δ) we have

f(x)

x
< M and f(x) < δ1.
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Hence for each x ∈ (0, δ), f2(x)
f(x) < M and f(x)

x
< M , so

f2(x) < Mf(x) < M2x.

Therefore,

lim sup
x→0+

f2(x)

x
6M2 <∞.

Analogously, by the induction we can proof that

lim sup
x→0+

fk(x)

x
<∞

for each k ∈ N. ⊓⊔

It is interesting that we can neither change the number 1 from the condition (a)
nor consider the weaker inequality.

Example 3.2. There exists a function f ∈ A such that lim inf
x→0+

f(x)
x

= 1 and f2 /∈ A.

Take a sequence (an)n∈N decreasing to zero and such that lim
n→∞

an

an+1
= ∞. Put f(x) =

an for x ∈ [an+1, an). Then lim inf
x→0+

f(x)
x

= 1, so f ∈ A. Simultaneously f2(x) = an for

x ∈ [an+2, an+1). For any x < a2 there is n ∈ N such that x ∈ [an+2, an+1). Hence
f2(x)

x
>

an

an+1
and lim inf

x→0+

f2(x)
x

> lim
n→∞

an

an+1
= ∞. So f2 /∈ A. ⊓⊔

It is evident that different functions can generate the same topologies. However, if
we have equal topologies generated by functions we can not predict the behavior of
topologies generated by iterations of these functions.

Example 3.3. There exist functions f, g ∈ A such that Tf = Tg and fk /∈ A but
gk ∈ A for any k ∈ N.

Take a sequence (an)n∈N and the function f as in Example 3.2. Put g(x) = an for
x ∈ (an+1, an]. Obviously gk = g for any k ∈ N. It is not difficult to check that
Tf = Tg (it also follows immediately from [4], Theorem 2). We have shown in the
previous example that f2 /∈ A. Analogously fk /∈ A for any k ∈ N. ⊓⊔

Example 3.4. There exist functions f, g ∈ A such that Tf = Tg and Tgk $ Tfk for
any k ∈ N.

Take a sequence (an)n∈N as in Example 3.2. Put f(x) = an+1 for x ∈ [an+1, an)
and g(x) = an+1 for x ∈ (an+1, an]. Then Tf = Tg and fk, gk ∈ A, k ∈ N. Notice
that and any k ∈ N, fk(x) = f(x) and gk(x) = an+k for x ∈ (an+1, an]. Therefore

lim
x→0+

fk(x)
gk(x) = ∞ and from [4], Corollary 1, we obtain Tgk $ Tfk , k ∈ N. ⊓⊔

As it is described in Theorem 2.3, the family of all f -density topologies can be
splitted into 4 subfamilies. One can ask if it is possible, that there exists a number
k ∈ N such that the topology Tfk belongs to different subfamily than Tf? To answer
this question we will need the following technical proposition.
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Proposition 3.5. Let f, fk ∈ A, k ∈ N.

(a) lim inf
x→0+

f(x)
x

= 0 ⇐⇒ lim inf
x→0+

fk(x)
x

= 0.

(b) lim sup
x→0+

f(x)
x

= ∞ ⇐⇒ lim sup
x→0+

fk(x)
x

= ∞.

Proof. Assume that lim inf
x→0+

f(x)
x

= 0. Then there exists a decreasing sequence (xn)n∈N

tending to 0 such that

lim inf
x→0+

f(x)

x
= lim

n→∞

f(xn)

xn
= 0.

So there is a number n0 ∈ N such that f(xn)
xn

< 1 for n > n0. Hence f
k(xn) 6

fk−1(xn) 6 . . . 6 f(xn) < xn and

lim inf
x→0+

fk(x)

x
6 lim

n→∞

fk(xn)

xn
6 lim

n→∞

f(xn)

xn
= 0.

Now we assume that lim inf
x→0+

f(x)
x

> 0. In the same way as in Property 3.1 we can

prove that lim inf
x→0+

fk(x)
x

> 0, for any k ∈ N.

The proof of the condition (b) is analogous. ⊓⊔

The next theorem is a simple consequence of the above proposition, Theorem 2.3
and the fact that if f(x) 6 g(x) for x > 0, then Tf ⊂ Tg.
Theorem 3.6. Let f ∈ A.

(a) If 0 < lim inf
x→0+

f(x)
x

6 lim sup
x→0+

f(x)
x

<∞, then Tf = Tfk = Td.

(b) If 0 = lim inf
x→0+

f(x)
x

6 lim sup
x→0+

f(x)
x

<∞, then Tfk ⊂ Tf $ Td.

(c) If 0 < lim inf
x→0+

f(x)
x

< lim sup
x→0+

f(x)
x

= ∞, then Td $ Tf and Td $ Tfk

(d) If 0 = lim inf
x→0+

f(x)
x

< lim sup
x→0+

f(x)
x

= ∞, then Tfk ⊂ Tf but Tf * Td and Tfk * Td.

In general we do not know what is the relation between Tf and Tfk in cases (c)
and (d).

Topologies generated by functions can not be invariant under multiplication by
nonzero numbers. It depends on the condition which we call △2, because it is very
similar to the condition △2 considered in the theory of Orlicz spaces.

Definition 3.7 ([5]). We will say that f ∈ A fulfills △2 condition (f ∈ △2) if

lim sup
x→0+

f(2x)

f(x)
<∞. (△2)

The condition △2 is equivalent to the condition lim sup
x→0+

f(αx)
f(x) <∞ for any number

α > 0 ([5], Proposition 3). Observe, that for any α > 0 the function f(x) = xα and
any its iteration fulfill △2 (f ∈ A only for α > 1).
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If a function f fulfills △2 then the topology Tf is invariant under multiplication by
nonzero numbers ([5], Theorem 4). If Tf ⊂ Td then △2 is the necessary and sufficient
condition for this invariantness. If Tf 6⊂ Td then there exists a function g /∈ △2 such
that Tf = Tg ([5], Theorem 6). One can ask, if it is possible that for a function
f ∈ △2 there exists a number k ∈ N such that fk has not such property. The answer
is negative due to the following theorem.

Theorem 3.8. If f, g ∈ A fulfill the condition △2, then their composition g ◦ f also
fulfills △2.

Proof. Assume that f ∈ △2. Hence there exist numbers M > 0, δ1 > 0 such that
f(2x)
f(x) < M for x ∈ (0, δ1). By the monotonicity of the function g we have

g(f(2x)) < g(Mf(x))

for each x ∈ (0, δ1). Since g ∈ △2, we have that for each α > 0, lim sup
x→0+

g(αx)
g(x) < ∞.

Put α =M . Then there exist K > 0 and δ2 > 0 such that g(Mx)
g(x) < K for x ∈ (0, δ2).

From the assumption lim
x→0+

f(x) = 0 it follows that there exists δ3 > 0 such that

f(x) < δ2 whenever x ∈ (0, δ3). Hence for δ = min(δ1, δ2, δ3) and x ∈ (0, δ),

g(f(2x))

g(f(x))
6
g(Mf(x))

g(f(x))
< K.

Therefore,

lim sup
x→0+

g(f(2x))

g(f(x))
<∞.

⊓⊔

Corollary 3.9. If f ∈ △2, then f
k ∈ △2 for any k ∈ N.

It is easy to check that if f ∈ A and

0 < lim inf
x→0+

f(x)

x
6 lim sup

x→0+

f(x)

x
<∞, (1)

then f ∈ △2 if and only if fk ∈ △2. Moreover, if (1) holds then Tf = Tfk = Td so this
case is not interesting, because the density topology is invariant under multiplication
by nonzero numbers. The next examples show that if one of the inequalities of (1) is
not fulfilled we do not have the equivalence f ∈ △2 ⇐⇒ fk ∈ △2. We will use the
functions similar to the functions defined in [7], Lemma 1.

Example 3.10. There exists a function g ∈ A such that 0 = lim inf
x→0+

g(x)
x

<

lim sup
x→0+

g(x)
x

<∞, g /∈ △2 and g2 ∈ △2.

Let an =
√

bnbn+1 for n ∈ N, where (bn)n>0 is a strictly decreasing sequence tending

to zero such that lim
n→∞

bn+1

bn
= 0. Put
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g(x) =











x2

bn
for x ∈ (

√
anbn, bn),

bn+1 for x ∈ [bn+1,
√
anbn],

b1 for x > b1.

Obviously, g is nondecreasing, g(x) 6 1 for any x > 0 and lim
x→0+

g(x) = 0. Moreover,

lim inf
x→0+

g(x)

x
6 lim

n→∞

g(an)

an
= lim

n→∞

√

bn+1

bn
= 0.

Hence g ∈ A and lim sup
x→0+

g(x)
x

<∞. It does not fulfil condition △2. Indeed, let x > 0.

Then x ∈ [bn+1, bn) for a certain n ∈ N. Therefore,

lim sup
x→0+

g(2x)

g(x)
> lim

n→∞

g(2
√
anbn)

g(
√
anbn)

> lim
n→∞

√

bn
bn+1

= ∞.

From the definition of g we obtain

g2(x) =











x4

b3n
for x ∈ [

√
anbn, bn),

bn+1 for x ∈ [bn+1,
√
anbn),

b1 for x > b1.

From Proposition 3.1 it follows that g2 ∈ A. We will show that g2 ∈ △2. Notice, that

for x >
√
anbn we have g2(x) 6 x4

b3n
. Take x > 0. Then there is natural number n such

that x ∈ (bn+1, bn]. If x, 2x ∈ [
√
anbn, bn) then g

2(x) = x4

b3n
and g(2x) 6 (2x)4

b3n
. Hence

g2(2x)
g2(x) 6 16. If x, 2x ∈ [bn+1,

√
anbn) then

g2(2x)
g2(x) = 1. If x ∈ [

√
anbn, bn) and 2x > bn

then g2(2x)
g2(x) = g2(2x)

g2(bn)
· g2(bn)

g2(x) 6
g2(2bn)
g2(bn)

· 1 6 16. Hence g2 ∈ △2. ⊓⊔

Example 3.11. There exists a function g ∈ A such that 0 < lim inf
x→0+

g(x)
x

<

lim sup
x→0+

g(x)
x

= ∞, g /∈ △2 and g2 ∈ △2.

Let (an)n>0 be a strictly decreasing sequence tending to zero such that lim
n→∞

an+1

an
= 0

and bn =
√
anan+1, n ∈ N. Put

g(x) =











x2

an
for x ∈ (an,

√
anbn],

an−1 for x ∈ (
√
anbn, an−1],

a0 for x > a0.

The function g belongs to A and it does not fulfill condition △2. Indeed,

g(2
√
anbn)

g(
√
anbn)

>
an−1

bn
=

√

an−1

an
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and

lim sup
x→0+

g(2x)

g(x)
> lim

n→∞

g(2
√
anbn)

g(
√
anbn)

= ∞.

Moreover,

lim sup
x→0+

g(x)

x
> lim

n→∞

g(
√
anbn)√
anbn

= lim
n→∞

4

√

an+1

an
= ∞.

From the definition of g we obtain

g2(x) =











x4

a3
n
for x ∈ (an,

√
anbn],

an for x ∈ (
√

an+1bn+1, an],

a1 for x > a1.

The function g2 is continuous, g2 ∈ A. Analogously as in previous example we show
that g2 ∈ △2. ⊓⊔
Example 3.12. There exists a function g ∈ A such that 0 = lim inf

x→0+

g(x)
x

<

lim sup
x→0+

g(x)
x

= ∞, g /∈ △2 and g2 ∈ △2.

Let (an)n>0 and (bn)n>0 be sequences from the previous example. Put

g(x) =











x2

a2n−1
for x ∈

[

b2n,
√

a2n−1b2n−2

)

,

a2n for x ∈
[√

a2n+1b2n+1, b2n
)

,

a0 for x > a1.

The function g has all required properties: belongs to A, it does not fulfill condition

△2 and 0 = lim inf
x→0+

g(x)
x

< lim sup
x→0+

g(x)
x

= ∞. From the definition of g we obtain

g2(x) =











x4

a3
2n−1

for x ∈ [
√

a2n−1b2n,
√

a2n−1b2n−1),

a2n for x ∈ [
√

a2n+1b2n+1,
√

a2n−1b2n),

a0 for x >
√
a1b1.

The function g2 is continuous, g2 ∈ A. Analogously as in previous example we show
that g2 ∈ △2. ⊓⊔

In Examples 3.10 and 3.11 we have constructed the functions which fulfill the

condition lim sup
x→0+

g(2x)
g(x) = ∞ (g /∈ △2), but their iterations satisfy △2. We can not

exchange the the upper limit in this condition into the limit as it is shown by the next
theorem.

Theorem 3.13. Let f, fk ∈ A. If lim
x→0+

f(2x)
f(x) = ∞, then fk /∈ △2 for any k ∈ N.

Proof. From the assumption, lim
n→∞

f(2xn)
f(xn)

= ∞ for any sequence (xn)n∈N such that

lim
n→∞

xn = 0, in particular

lim
n→∞

f(2f(xn))

f(f(xn))
= ∞. (2)
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Fix the sequence (xn)n∈N. There is n0 ∈ N such that f(2xn)
f(xn)

> 2 for n > n0. Hence

f2(2xn) > f(2f(xn)). (3)

Therefore, for each sequence (xn)n∈N
we obtain

lim
n→∞

f2(2xn)

f2(xn)

(3)

> lim
n→∞

f(2f(xn))

f2(xn)
= ∞

and finally we obtain lim
x→0+

f2(2x)
f2(x) = ∞, so f2 /∈ △2. We can prove by induction that

lim
x→0+

fk(2x)
fk(x)

= ∞ for any k ∈ N, which finishes the proof. ⊓⊔

4. Similarity between topologies generated by function and its

iteration

Now we will focus on a problem: do there exist topologies generated by a func-
tion and its iteration which are not similar? Theoretically we know that there are
f -density topologies which are not similar, but in practice it is not easy to indicate
specific functions for which we can obtain such result. To examine the interior of sets
in density topology we often construct Cantor-like sets of positive measure. It is not
difficult to construct a set of this kind which has no f -density points.

Example 4.1. There exists a set of positive measure without superdensity points.

By induction we will define a central Cantor set E ⊂ [0, 1] of positive measure which
has no f -density points for f(x) = x2.

From the interval [0, 1] we remove concentric open interval denoted by
(

a
(1)
1 , b

(1)
1

)

of the length 1
4 . Put E1 =

(

a
(1)
1 , b

(1)
1

)

. Suppose that for certain n > 2 we have

constructed the sets E1, E2, . . . , En−1 such that En−1 =
2n−2
⋃

i=1

(

a
(i)
n−1, b

(i)
n−1

)

. The set

[0, 1] \
n−1
⋃

k=1

Ek consists of 2n−1 closed intervals and from each such interval we remove

concentric interval of the length 1
4n which we denote by

(

a
(i)
n , b

(i)
n

)

, i = 1, . . . , 2n−1.

Put En =
2n−1
⋃

i=1

(

a
(i)
n , b

(i)
n

)

. Then λ(En) = 2n−1 · 1
4n = 1

2n+1 . The set E = [0, 1] \
∞
⋃

n=1
En

is of positive measure since λ(E) = 1−
∞
∑

n=1

1
2n+1 = 1

2 .

Fix x0 ∈ E. Then for any natural n there is a number in ∈ {1, . . . , 2n−1} such

that the distance between x0 and the interval (a
(in)
n , b

(in)
n ) is the smallest. By putting

cn =
a(in)
n +b(in)

n

2 we obtain a sequence (cn)n∈N
converging to x0. Without loosing the

generality, we may assume that (cn)n∈N
is decreasing to x0. Observe, that cn−x0 6

1
2n

and λ
(

E′ ∩ [x0, cn]
)

> 1
2 · λ

(

(a
(in)
n , b

(in)
n )

)

= 1
2 · 1

4n . Hence
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λ (E′ ∩ [x0, cn])

(cn − x0)2
>

1
2 · 1

4n
(

1
2n

)2 =
1

2
.

and lim inf
n→∞

λ

(

E′
∩[x0,cn]

)

(cn−x0)2
>

1
2 . Therefore, x0 is not a superdensity point of E. ⊓⊔

In general it is rather difficult to describe an interior of a set in f -density topologies
(see [10]).

Theorem 4.2 ([10], Theorem 3 and 10).

(a) For any f ∈ A and any set A ⊂ R there exists a countable ordinal α > 1 such
that intTf

(A) = A ∩ Φα
f (B) where B is a measurable kernel of A.

(b) Let f ∈ A and lim inf
x→0+

f(x)
x

= 0. For each n ∈ N there exists a perfect nowhere

dense set A such that intTf
(A) $ A∩Φk

f (A) for k < n and intTf
(A) = A∩Φn

f (A).

However, if λ (Φf (A)△A) = 0, then we know that the interior of A is not empty
(see Remark 2.1). To answer the question from the beginning of this section, firstly
we will construct Cantor-like set of positive measure which has nonempty interior in
Tf for a power function f(x) = xα, (α > 1) and secondly, we will show that this set
has the empty interior for another power function.

Theorem 4.3. For f(x) = xα, α > 1, there exists a perfect nowhere dense set E of
positive measure such that almost every point of E is its f -density point.

Proof. Analogously as in Example 4.1 we will define a central Cantor set E ⊂ [0, 1] of
positive measure which has desired properties. Following denotations of this example,

from the interval [0, 1] we remove concentric open interval denoted by E1 =
(

a
(1)
1 , b

(1)
1

)

of the length 1
2α . Suppose that for certain n > 2 we have the setsE1, E2, . . . , En−1 such

that En−1 =
2n−2
⋃

i=1

(

a
(i)
n−1, b

(i)
n−1

)

. From each of closed intervals of the set [0, 1] \
n−1
⋃

k=1

Ek

we remove concentric interval of the length 1
2n−1 · 1

n2(2n−1)α and denote it by
(

a
(i)
n , b

(i)
n

)

,

i = 1, . . . , 2n−1. By putting En =
2n−1
⋃

i=1

(

a
(i)
n , b

(i)
n

)

we have λ(En) =
1

n2(2n−1)α .

Let E = [0, 1] \
∞
⋃

n=1
En. Let us notice that for any n ∈ N

λ(En+1) <
1

22α
λ(En)

and

λ
(

∞
⋃

k=n+1

Ek

)

6 λ(En). (4)

Take k ∈ N. For any n > k and i = 1, . . . , 2n−1 there exists a number z
(i)
n,k > b

(i)
n such

that
λ(En)

(

z
(i)
n,k − a

(i)
n

)α
=

1

k
. (5)
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We can observe that if z > z
(i)
n,k then

λ(En)
(

z − a
(i)
n

)α
<

1

k
. (6)

It is evident, that

z
(i)
n,k − a(i)n =

(

k · λ(En)
)

1
α (7)

and
z
(i)
n,k − b(i)n <

(

k · λ(En)
)

1
α . (8)

For k ∈ N define the sets

Ak =
∞
⋃

n=k

2n−1
⋃

i=1

[

b(i)n , z
(i)
n,k

]

.

We will show that λ
(

lim sup
k→∞

Ak

)

= 0. For any k ∈ N we have

λ(Ak) =

∞
∑

n=k

2n−1
∑

i=1

(

z
(i)
n,k − b(i)n

)

(8)

6

∞
∑

n=k

2n−1
∑

i=1

(

k · λ(En)
)

1
α =

=
∞
∑

n=k

2n−1 · k 1
α · 1

n
1
α · 22n−1

6

∞
∑

n=k

1

2n
=

1

2k−1
.

Hence for any m > 2

λ
(

∞
⋃

k=m

Ak

)

6

∞
∑

k=m

1

2k−1
=

1

2m−2
.

From the fact that the sequence
∞
⋃

k=m

Ak is decreasing we obtain

λ
(

lim sup
k→∞

Ak

)

= λ
(

∞
⋂

m=1

∞
⋃

k=m

Ak

)

= lim
m→∞

λ
(

∞
⋃

k=m

Ak

)

= 0.

Let N = lim sup
k→∞

Ak ∪
( ∞

⋃

n=1

2n−1
⋃

i=1

{b(i)n }
)

and x ∈ E \N . We will show that x is a left-

hand f -density point of E for f(x) = xα, α > 1. Fix ε > 0 and take k0 ∈ N such that
2
k0

< ε and x ∈ E \ Ak0 . Then there are numbers n0 > k0 and i0 ∈ {1, . . . , 2n0−1}
such that b

(i0)
n0 < x. We denote

t0 = min
{

∣

∣x− b(i)n

∣

∣ : n 6 n0, i = 1, . . . , 2n−1, b(i)n ∈
[

b(i0)n0
, x

)

}

.

For any t ∈ (0, t0) we denote by nt the smallest number n and by it the biggest

number i for which
(

a
(it)
nt , b

(it)
nt

)

⊂ (x − t, x) and b
(it)
nt − a

(it)
nt 6 b

(i0)
n0 − a

(i0)
n0 . Then

nt > n0 and x > z
(it)
nt,k0

, so
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λ(Ent
)

(

x− a
(it)
nt

)α
<

1

k0
.

Since x− t < a
(it)
nt , we have t > x− a

(it)
nt . Hence

λ
(

[x− t, x] \ E
)

6 λ(Ent
) + λ

(

∞
⋃

n=nt+1

λ(En)
) (4)

6 2λ(Ent
)

and
λ ([x− t, x] \ E)

tα
<

2λ(Ent
)

(

x− a
(it)
nt

)α
<

2

k0
< ε

and x is a left-hand f -density point of E.

Analogously, for any k ∈ N and n > k we can define a number y
(i)
n,k < a

(i)
n for which

λ(En)
(

b
(i)
n − y

(i)
n,k

)α
=

1

k

and the sets

Bk =

∞
⋃

n=k

2n−1
⋃

i=1

[

y
(i)
n,k, a

(i)
n

]

such that λ
(

lim sup
k→∞

Bk

)

= 0. Then any number

x ∈ E \
(

lim sup
k→∞

Bk ∪
(

∞
⋃

n=1

2n−1
⋃

i=1

{a(i)n }
)

)

is a right-hand f -density point of E. Summarising, almost all points of E are its
f -density points. ⊓⊔

Corollary 4.4. For any α > 1 and function f(x) = xα there exists a set Eα of
positive measure such that intTf

(Eα) = Eα ∩ Φf (Eα) 6= ∅.

Proposition 4.5. Let f(x) = xα, g(x) = x3α, α > 1. Then Tf 6∼ Tg.

Proof. Let f(x) = xα, α > 1 and E be the set constructed in the proof of Theorem 4.3.
We will show that no point of this set is its g-density point, so E has the empty interior
in the topology Tg for g(x) = x3α.

Fix x0 ∈ E. Analogously as in Example 4.1 we have the sequence (cn)n∈N
decreasing

to x0 such that cn − x0 6
1
2n and λ (E′ ∩ [x0, cn]) >

1
2 · λ

(

(a
(in)
n , b

(in)
n )

)

= 1
2 · 1

2n−1 ·
1

n2(2n−1)α . Hence

λ (E′ ∩ [x0, cn])

g(cn − x0)
>

1
n2(2n−1)α+n

(

1
2n

)3α =
2n(α−1)+α

n
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and lim
n→∞

λ(E′
∩[x0,cn])

g(cn−x0)
= ∞. Therefore, x0 /∈ Φg(E) and consequently, E∩Φg(E) = ∅.

Thus E has the empty interior in Tg. ⊓⊔

Observe that if the interior of a set is empty for a function f1(x) = xα1 , then it is
also empty for any function f2(x) = xα2 with α2 > α1.

Corollary 4.6. For any function f(x) = xα, α > 1, there is n ∈ N such that
Tfn 6∼ Tf . If α > 3, then Tf2 6∼ Tf .

Notice that for α = 2, Theorem 4.3 gives us the set which almost all points are its
superdensity points, but Proposition 4.5 does not resolve the problem if the second it-
eration of f(x) = x2 generates the topology which is similar or not to the superdensity
topology.

Nevertheless, using Corollary 4.6 we can construct a decreasing sequence (Tn)
n∈N

of topologies generated by functions, such that Ts ' Tn for any n ∈ N and Ti is not
similar to Tj for any i 6= j. Comparing this result with Corollary 2.6 we can say that
there are a lot of f -density topologies dissimilar to superdensity topology, of both
kinds: the smaller and larger than Ts.

At the end let us compare topologies generated by functions of the form f (x) = xα

with Hashimoto topology T ∗.

Remark 4.7. Any nowhere dense set has an empty interior in Hashimoto topology
T ∗. Consequently, by Theorem 4.3, if f (x) = xα and α > 1 then Tf is not similar
to T ∗.

The latter remark does not establish that no f -density topology with lim inf
x→0+

f1(x)
x

=

0 is similar to T ∗. For example, the function

g (x) =

{

x
1
x for x ∈ (0, 1)

1 for x > 1

belongs to A and for any α > 1 the set Eα, constructed in Theorem 21 satisfies
equality: Φg(Eα) = ∅. Therefore Tg is smaller than (and not similar to) any Tfα
where fα (x) = xα and α > 1. We do not know if Tg is similar to T ∗.

Bibliography

1. Aniszczyk B., Frankiewicz R.: Nonhomeomorphic density topologies. Bull. Polish Acad. Sci.
Math. 34, no. 3–4 (1986), 211–213.

2. Bartoszewicz A., Filipczak M., Kowalski A., Terepeta M.: Similarity between topologies. Centr.
Eur. J. Math. 12 (2014), 603–610.

3. Filipczak M., Filipczak T.: A generalization of the density topology. Tatra Mt. Math. Publ. 34

(2006), 37–47.
4. Filipczak M., Filipczak T.: On the comparison of density type topologies generated by functions.

Real Anal. Exchange 36 (2010), 341–352.
5. Filipczak M., Filipczak T.: Remarks on f-density and ψ-density. Tatra Mt. Math. Publ. 34

(2006), 141–147.
6. Filipczak M., Filipczak T.: On f-density topologies. Topology Appl. 155 (2008), 1980–1989.



140 M. Filipczak and M. Terepeta

7. Filipczak M., Filipczak T.: On ∆2 condition for density-type topologies generated by functions.
Topology Appl. 159 (2012), 1838–1846.

8. Filipczak M., Filipczak T.: Density type topologies generated by functions. Properties of f-

density. In: Traditional and Present-day Topics in Real Analysis (dedicated to Professor Jan
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